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E N V I R O N M E N T A L  S T U D I E S

Projections of future forest degradation and CO2 
emissions for the Brazilian Amazon
Talita O. Assis1*, Ana Paula D. Aguiar1,2*, Celso von Randow1, Carlos A. Nobre3

In recent years, the area affected by forest degradation in the Brazilian Amazon has frequently been higher than 
deforestation. From August 2006 to July 2019, the degraded area totaled 194,058 km2, representing almost two 
times the 99,630 km2 deforested in the same period. The impacts of degradation include biodiversity loss and 
changes in the carbon stocks, affecting the CO2 balance and future climate changes. This paper aims to explore 
socioeconomic and environmental factors that influence forest degradation, project future scenarios, and assess 
the impact on the regional carbon balance, combining forest degradation and deforestation-related processes 
(clear-cut deforestation and secondary vegetation dynamics). We show that, while net CO2 emissions from 2020 
to 2050 are 0.74 Gt CO2 in the Sustainable scenario, this value reached 22.63 Gt CO2 in the Fragmentation scenario, 
an increasingly plausible scenario given the recent trends in the region.

INTRODUCTION
Land changes are closely linked to sustainability and are critical 
drivers in the mediation between human and physical systems 
(1–4). Some of these processes consist of modification-land surface 
without conversion to a whole different land cover class. Forest 
degradation, which consists of partial forest loss due to anthropogenic 
actions or environmental changes, is an example of this type of 
process. It differs from clear-cut deforestation, in which the forest is 
substituted by pasture, for example.

In the Brazilian Amazon, the forest degradation process involves 
a combination of wood logging and fire (5–8), causing biodiversity 
loss (9, 10), changes in forest structure (11), and carbon stocks 
(12–15), and other consequences. Degradation has been substantial 
in the Amazon in recent years, frequently affecting a larger area 
than deforestation (16). From August 2006 to July 2019, the degraded 
area totaled 194,058 km2, representing almost two times the 99,630 km2 
deforested in the same period (16, 17).

Land changes, such as degradation, affect local and global scales 
(1, 18), motivating the analysis of their causes and consequences. 
These analyses can be supported by models that quantify the rela-
tionships between land changes and their drivers. Models help to 
organize knowledge and understand data relationships and their 
possible economic and environmental implications, in addition to 
enabling the evaluation of public policy options (19).

Models including interactions of land changes with climate, 
biodiversity, hydrological cycle, soil, or greenhouse gas (GHG) 
emissions are increasingly used to understand and represent human-
nature interactions (20–25). Regarding CO2 emissions due to land-use 
changes, several models use different approaches. The bookkeeping 
model (26) represents the carbon flow from loss of initial biomass, 
where part of this biomass is burned, deposited as slash, or stored in 
products. This model is very useful to explore the impacts of different 
land-use processes, as it allows us to monitor and analyze post-forest 
disturbance dynamics. The model INPE-EM (25) presented an 

improvement of the bookkeeping model, representing it spatially. 
Last, Aguiar et al. (27) and Assis et al. (28) implemented CO2 
emissions because of the forest degradation process in INPE-
EM. In recent years, the need to reduce CO2 emissions to limit 
climate changes increases the demand for robust GHG emission 
estimates, especially in a sector with high emissions, such as land-use 
changes.

Combined with land change models, scenarios can help explore 
their impact under different socioeconomic and environmental 
conditions through plausible stories about the future. Some authors 
developed CO2 emission scenarios because of degradation in the 
Brazilian Amazon. Aguiar et al. (27) estimated forest degradation 
scenarios to 2050, however, without modeling the degradation driving 
factors. Longo et al. (29) explored the effects of the droughts on the 
forest to project scenarios to 2100. Fonseca et al. (30) and Le Page 
et al. (31) developed fire probability scenarios for 2100, combining 
land-use changes and climate scenarios.

This paper presents an innovative approach to creating forest 
degradation and CO2 emission scenarios, adapting and combining 
the land change model LuccME (32), the carbon emission book-
keeping model INPE-EM (25), and available deforestation scenarios. 
This approach allows us to explore socioeconomic and environ-
mental driver factors that influence forest degradation spatial distri-
bution, project future scenarios of degradation, and estimate CO2 
emissions for each scenario for the Brazilian Amazon.

RESULTS
The experiments performed to achieve the objective of this work 
generated partial results that are important to be analyzed. There-
fore, this section presents the statistical analysis that was input to 
the LuccME, the results from the degradation model from 2006 to 
2019 and its validation, the degradation scenarios, and, finally, the 
scenarios for 2050 and CO2 emissions.

Forest degradation driver factors
The statistical analysis performed from 2007 to 2011 to support the 
LuccME model potential component is important to understand the 
spatial distribution of degradation in the Amazon. The exploratory 
analysis of the data pointed the need to build different models for 
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the dry and nondry years because of the differences in the degrada-
tion process between the two periods, discussed in (33). We 
developed three Spatial Lag regression models aiming to under-
stand the driving factors of forest degradation: a model for the 
forest degradation in years with extreme drought, a model for the 
forest degradation in nondrought years, and a model for the non-
degraded forest, to verify factors that help prevent this type of event. 
Table 1 describes these models and their R2 and Akaike Information 
Criterion (34).

Degradation was best explained by Historical Deforestation and 
Connection to Markets in nondrought years and Water Deficit 
Anomaly, and Recent Deforestation in drought years. The variables 
that best described the permanence of the nondegraded forest were 
the percentage of Conservation Units, Indigenous Territories, and 
distance to Roads and Urban Centers. The spatial coefficient, which 
measures the spatial correlation of each dependent variable, was 
substantial and higher than 0.75 in all models, meaning that degra-
dation is also a spatially concentrated process, as deforestation (35). 
We obtained 0.59, 0.46, and 0.86 of R2 score to the degradation 
in nondrought years, degradation in extreme drought years, and 
nondegraded forest, respectively.

Land change model validation
We ran the LuccME model from 2012 to 2019 using the regression 
models presented above and compared the simulated degradation 
maps with the real degradation data to verify the adjustment. 
Figure 1 shows maps of the percentage of degradation in 25 km 
× 25 km cells from 2012 to 2019 simulated by model (Fig. 1A) and 
inferred by DEGRAD and DETER degradation data (Fig. 1B). The 
model fit reached 66.6% when comparing the patterns of both maps.

In general, the model captured all the leading hot spots of degra-
dation in the period. The model represented the degradation patterns 
in northern Mato Grosso state, a region with most of the degrada-
tion observed in the period. However, the model overestimated 
degradation in Rondônia and underestimated it in Pará and Roraima 
states, especially in southeastern Pará state. On the basis of these 
models, we proceeded to explore future scenarios.

Forest degradation and CO2 emission scenarios
We built two degradation scenarios, Sustainable, with improvements 
in the socioeconomic, institutional, and environmental dimensions, 
and Fragmentation, with the weakening of the socioenvironmental 
dimension and chaotic urbanization, combining the premises of 
Deforestation Scenarios developed by (27) with the Fire Probability 
Scenarios presented by (30).

The deforestation Sustainable scenario (27) considered that 
political and institutional conditions would favor reducing deforesta-
tion by 2020. This scenario also considers the regeneration of all 
illegally deforested areas and assumes that secondary vegetation will 
increase from 22 to 35% from 2015 to 2030 and will no longer be 
periodically removed. Based on the (30) estimates in “RCP4.5 and 
Sustainable scenario,” we calculated forest degradation rates con-
sidering the increase of 90.9% in the forest degradation until 2100.

The deforestation Fragmentation scenario (27) assumed a return 
of high deforestation rates, like those before 2004. In this scenario, the 
National Forest Code is not respected. Secondary vegetation follows 
its current dynamics, with a high rate of deforested land abandon-
ment and a short cutting cycle in consolidated areas. We calculated 
the forest degradation rates considering the increase of 21% in the 
forest degradation until 2100, estimated on the (30) estimates in 
“RCP4.5 and Fragmentation scenario.”

Figure 2 shows the maps containing the total percentage of 
degradation in 25 km × 25 km cells, which occurred from 2020 to 
2050 for Sustainable and Fragmentation degradation scenarios. As 
the maps represent the sum of the degradation that occurred in each 
cell within the period of the scenarios, values greater than 1 (one) may 
occur, which indicates that this cell has suffered recurrent degradation.

We note repeated degradation events in northern Mato Grosso 
state and the southeastern and northeastern Pará state, being the 
most affected areas by degradation in both scenarios. We emphasize 
that these areas also should be the most affected by deforestation by 
2050, according to (27) scenarios. In other words, in these regions, 
an intensification of the patterns already observed today is expected, 
with a large part of the forest exposed to deforestation or forest 
degradation.

Table 1. Spatial lag regressions.  

Nondegraded forest Degradation in normal precipitation years Degradation in extreme drought years

R2: 0.86 R2: 0.59 R2: 0.46

Akaike (AIC): −8,031 Akaike (AIC): −16,099.5 Akaike (AIC): −27,777.8

Variable Coefficient Prob. Variable Coefficient Prob. Variable Coefficient Prob.

Spatial coefficient 0.90 0.000 Spatial coefficient 0.824 0.000 Spatial 
coefficient 0.773 0.000

Constant −0.111 0.000 Constant 0.066 0.000 Constant 0.000 0.102

Conservation units 0.052 0.000 Historical 
deforestation 0.024 0.000 Water deficit 

anomaly −2.834 × 10−5 0.000

Indigenous territories 0.057 0.000 Connection to 
markets −0.004 0.000 Recent 

deforestation 0.837 0.000

Roads 0.006 0.000

Urban centers 0.008 0.000
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Almost 100% of forest cells are exposed to some level of degrada-
tion by 2050. At the end of the simulation, most grid cells had up to 
10% of forest degradation. However, in the Sustainable scenario, it 
is still possible to observe regions of intact forest, especially in eastern 
Amazonas state.

We combined the Sustainable and Fragmentation degradation 
scenarios with the Sustainable and Fragmentation deforestation 
scenarios provided by (27) to perform integrated CO2 emission 
estimates. Using the INPE-EM model (27, 28), which associates 
land-use and biomass change maps to calculate CO2 emissions, we 
projected the carbon balance in Sustainable and Fragmentation 
scenarios. Within the scenarios period (from 2020 to 2050), CO2 
net emissions totaled 1.3 Gt CO2 in the Sustainable scenario and 
24.07 Gt CO2 in the Fragmentation scenario, respectively, considering 
the emissions from forest degradation and deforestation, gains 
from degraded forest recovery, and secondary vegetation growth 
and emission from secondary vegetation loss. The gross emission 
due to forest degradation projected from 2020 to 2050 was 6.9 
and 10.2 Gt CO2 in Sustainable and Fragmentation scenarios, 

respectively, representing 46.7 and 25.4% of the 14.77 and 40.18 Gt 
CO2 gross emissions in Sustainable and Fragmentation scenarios. 
Table 2 summarizes these results.

DISCUSSION
This paper presented an innovative approach to creating degrada-
tion and CO2 emission scenarios, adapting and combining the 
LuccME land change model and the INPE-EM CO2 emission model. 
We organized the discussion into three parts. We first discussed the 
land change modeling implications of our results, then the spatial 
drivers of change, and, finally, the scenario results.

Modeling different behavior in drought 
and nondrought years
Our results demonstrated that the degradation assumed two distinct 
behaviors over the analysis period, one for years of extreme droughts 
and another for nondrought years. For this reason, we modified the 
LuccME framework to use two separate regressions for degradation. 

Fig. 1. Percentage of degradation in 25 km × 25 km cells from 2012 to 2019. (A) Simulated by LuccME. (B) Real data.

Fig. 2. Percentage of degradation in 25 km × 25 km cells from 2020 to 2050. (A) Sustainable scenario. (B) Fragmentation scenario.
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For this, we include a decision rule that makes the model alternate 
between both regressions throughout the simulation.

This approach enables exploration of the socioeconomic and en-
vironmental factors that influence forest degradation spatial distri-
bution and project scenarios of degradation and CO2 emissions of 
Brazilian Amazon. The adaptations made in the LuccME model 
to represent forest degradation can be used in other processes with 
similar characteristics.

Drivers of degradation
Among the various socioeconomic and environmental factors ana-
lyzed in this work, historical deforestation and the connection to 
markets (25, 35) better explained the spatial distribution of degra-
dation in nondrought years, reinforcing the understanding of the 
influence of historical deforestation on degradation. The Fragmen-
tation scenario caused by clear-cut deforestation exposes the forest 
along the edges (36) because of environmental or (8, 37) anthropo-
genic factors (38). Environmental drivers include the increase of 
flammability, wind speeds, and insolation rates. Anthropogenic 
drivers include facilitating the flow of wood and the management of 
areas deforested with fire, which can spread into the forest.

The market connects local activities, such as crops, for example, 
to regional and global processes (39, 40). Aguiar et al. (35) point out 
the connections to markets as an important factor in capturing the 
spatial patterns of the new frontiers in Brazil. The variable “connection 
to markets” used in this paper was constructed using the Generalized 
Proximity Metrics (GPM) to calculate the relative distance from 
each cell of the cellular space to São Paulo or Recife cities throughout 
the roads. It is essential to assess how connected to the main 
consumption markets each cell is. Our results also pointed out 
the importance of this driver to the degradation process. The 
“Connectivity to markets” variable was created calculating the 
distance from each cell to Sao Paulo or Brazilian Northeast consider-
ing the paved and unpaved roads. By considering the distance 
between two points weighted by highways, it combines consumer 
centers and roads to compose a connectivity indicator.

In years of extreme drought, the analyses pointed to water deficit 
anomaly and recent deforestation as the substantial drivers of forest 
degradation. Several authors have pointed out the importance of 
the relationship between water deficit in years of extreme drought 
(41–43). In these years, the proximity to recent deforestation (which 
occurred in the same year) gains space because of the escape of fires 
resulting from the cleaning of deforested areas. As the areas are 
drier, the fire spreads more easily, entering the forest regions.

Land-use/cover change and CO2 emission scenarios
This paper developed an innovative approach to creating future 
scenarios of forest degradation and corresponding CO2 emissions, 
adapting the land change modeling framework LuccME and com-
bining it to INPE-EM emission models. This approach allowed us 
to explore socioeconomic and environmental factors that influence 
the spatial distribution of forest degradation and project scenarios 
of degradation and CO2 emissions to the Brazilian Amazon. Merging 
degradation scenarios with deforestation scenarios developed by 
(27) allowed an integrated CO2 emission estimates.

This work presented two scenarios of emissions from forest 
degradation, considering two land-use scenarios, based on the 
Sustainable and Fragmentation scenarios of (27), combined with 
“Fragmentation + RCP4.5” and “Sustainable + RCP4.5” scenarios of 
(30), which had previously simulated forest degradation scenarios 
from land-use changes and climate change. Le Page et al. (31) also 
developed degradation scenarios based on land use and climate change 
for the Amazon. Still, both scenarios do not include the emissions 
resulting from this process. Aguiar et al. (27) modeled the emissions 
resulting from forest degradation, but the degradation was not spa-
tially modeled in those scenarios. Our results show a wide variation 
in the carbon balance between the two scenarios and bring gains 
in understanding how changes in deforestation/secondary vegetation/
degradation patterns can affect CO2 emissions in the Amazon.

Given the importance of deforestation as a driver, deforestation 
resulting from these scenarios substantially affects degradation 
results. The Sustainable Scenario is quite close to the Brazilian 
nationally determined contribution (NDC), which pledge on zero illegal 
deforestation by 2030. However, the resumption of growth in de-
forestation recorded by the PRODES system in recent years (e.g., 
2019, 2020, and 2021) takes Amazon reality away from the Sustainable 
scenario, bringing us closer to the Fragmentation scenario.

To explore the impact of different land-use change scenarios on 
emissions from degradation, we chose to work only with RCP4.5. 
However, as an improvement for future work, we suggest the use of 
different climate scenarios.

MATERIALS AND METHODS
Experimental design
To discuss scenarios of CO2 emissions from forest degradation in 
the Amazon in the period 2020–2050, we combined a spatially 
explicit land-use modeling approach with the CO2 emission model 
INPE-EM (25,  28). We used the LuccME land-use modeling 

Table 2. CO2 balance simulated in the scenarios.  

CO2 (Gt CO2) Period Sustainable scenario Fragmentation scenario

Net emissions
1960–2019 37.23 36.99

2020–2050 1.31 24.07

Degradation emissions
1960–2019 4.65 4.50

2020–2050 6.9 10.22

Total emissions
1960–2019 44.48 43.85

2020–2050 14.77 40.18

Degraded forest regeneration 1960–2019 −2.18 −1.97

2020–2050 −6.74 −8.55
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framework (32) to generate the annual degradation maps until 
2050, combined this maps with clear-cut deforestation and secondary 
vegetation scenarios developed by (27), and calculated CO2 emissions, 
considering the clear-cut deforestation and forest degradation pro-
cesses, using INPE-EM, as illustrated in Fig. 3.

Modeling tools
LuccME
LuccME is an open-source framework for the development of 
dynamic spatially explicit land-use and cover change models. This 
type of model can describe the evolution of land use and cover 
spatial patterns over time, quantifying its drivers (44) and spatially 
allocating the demand for change according to the potential of each 
cell. In general, we can divide these models into three components: 
demand, potential, and allocation. The Demand Component defines 
the change that the model will allocate at each time step (45, 46). 
Demand can be calculated from historical trends, assumptions 
arising from scenario construction, or economic models. The 
Potential Component is based on explanatory variables, mainly 
related by empirical methods, to calculate the suitable changes for 
each cell, defined by the demand component. The Allocation 
component is composed of computational mechanisms that establish 
competition through decision rules to allocate demand according to 
the potential of each cell at each model time step. LuccME separates 
these components responsible for calculating demand, potential, 
and allocation mechanisms and implements different components, 

according to the concepts of the various models found in the litera-
ture. We used the LuccME components derived from the CLUE 
model for continuous land-use variables (47) to generate annual 
degradation maps. In the “LuccME parametrization” section, we 
detailed Demand, Potential, and Allocation components and ex-
plain how we parametrized each of them at this work.
INPE-EM
INPE-EM is a carbon emission model (25) based on the bookkeeping 
model proposed by (26) and aims to generate annual estimates of 
emissions of GHG by the land cover change in a spatially explicit 
way. It is composed of three components: (i) clear-cut deforestation, 
(iii) secondary vegetation, and (iii) forest degradation, which per-
mits the representation of emission processes in an integrated way 
(27). We used the degradation maps generated in the LuccME, com-
bined with deforestation and secondary vegetation maps developed 
by (27) to obtain the complete estimates.

Here, we used the INPE-EM degradation component implemented 
by (28). This component improves the representation of the biomass 
changes following a degradation event and allows the use of different 
growth curves to represent the regeneration of the aboveground 
biomass (AGB).

We considered the second-order emission estimates provided by 
INPE-EM, which represent the gradual process of liberation and 
carbon absorption through several years after land change events 
and therefore carry the influence of lagged emissions because of 
historical processes in previous years.

Fig. 3. Experimental design. LuccME modeling framework generates the annual land-use maps, and INPE-EM represents the degraded forest dynamics and calculates 
CO2 emissions derived from this process. Adapted from (32) and (28).
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Study area and input data
Our study area is the Brazilian portion of the Amazon Biome, 
monitored by the PRODES system (16), which corresponds to 
approximately 4,000,000 km2. We used INPE monitoring systems, 
PRODES, DEGRAD, and DETER (16, 17), as our land cover sources. 
The PRODES system (16) identifies clear-cut deforestation using 
satellite monitoring in the Brazilian Legal Amazon since 1988 and is 
considered the official data for Amazon deforestation by the Brazilian 
government. Once an area is identified as deforested, it is not moni-
tored in the following years, even if crops or livestock farming in 
these areas is eventually abandoned, and there is a regeneration of 
the forest vegetation.

The DEGRAD system identifies forests exposed to fires and dis-
ordered selective exploitation in the areas monitored by PRODES.  
Degradation, unlike deforestation, is mapped in the year in which it 
occurred but does not remain represented in the following year. 
That is, while deforestation in 2007 corresponds to accumulated 
deforestation up to that year, degradation in 2007 corresponds to 
degradation that occurred exclusively in that year, without consider-
ing what happened in previous years. As degradation is not a com-
plete land cover modification, the same forest area can repeatedly 
suffer degradation and remain considered a forest. PRODES and 
DEGRAD generate annual products based on Remote Sensing 
imagery acquired from August of the prior year to July.

DETER B maps deforestation and other changes in forest cover 
and was used to complete the degradation temporal series because the 
DEGRAD system was discontinued in 2016 and replaced by DETER.  
To be compatible with the definitions of areas mapped by DEGRAD, 
we used the DETER B “Degradation” and “Burnt scar” classes (17). 
We also considered the period from August 1st of the previous year 
to July 31st for each year of analysis, like PRODES and DEGRAD.

To represent the degradation through a spatially explicit model, 
we organized a set of variables related to forest degradation based 
on the literature. These variables were integrated into a cellular 
space of 25 km × 25 km to make compatible information from 
different sources and formats. The cellular space (48) is a matrix 
structure where each cell is associated with several types of attributes, 
allowing to associate the vector and raster data in a single data layer 
within a Geographic Information System. Table 3 shows the data-
set, its source, and how it was stored in the cellular space.

Statistical analysis
LuccME parametrization
For the LuccME parametrization, we divided the study area into 
three different land cover classes: forest, degradation, and others, 
which includes nonforest areas and areas classified as “deforested” 
by the PRODES system (16). The “others” class is not simulated by 
the model but is considered a “mask” applied over the study area, 
updated every year.

The land-use classes were represented in the cellular space by the 
percentage of each one contained in each cell. The period considered 
in the model is from 2007 to 2050, distributed as follows: (i) 2007–
2011 (used to calculate the potential of each cell), (ii) 2012–2019 
(model calibration and validation), and (iii) 2020–2050 (model 
simulations). The following sections present the parametrization 
for LuccME Demand, Potential, and Allocation components.
Demand
We used LuccME Pre Computed Values Component, in which we 
externally calculate the demand and inform the model the expected 

area for each land cover each year. The degradation demand corre-
sponds to the annual degradation area indicated by DEGRAD (until 
2016) and DETER (after 2016). The forest area for each year is the 
forest area (considered in the respective PRODES year) minus the 
degraded area that year.
Potential (statistical analysis)
To spatially distribute the demand for each land cover class in the 
model domain, LuccME also calculates the potential of occurrence 
of a given land cover class (25). In this work, we used the LuccME 
potential component based on spatial regression (49), where the 
dependent variable is influenced by its occurrence in the neighborhood 
because changes in land use/cover in an area tend to spread through 
neighboring regions. This component allows us to dynamically update 
the potential for changes at each time step, considering the temporal 

Table 3. Variables and data sources.  

Variable Representation in the 
cellular space Source

Degradation Percentage of the cell 
degraded at year t

DEGRAD and 
DETER (16, 17)

Historical 
deforestation

Percentage of the cell 
deforested until the previous 

year t − 1
PRODES (16)

Recent deforestation Percentage of the cell 
deforested at year t PRODES (16)

Water deficit anomaly Water deficit anomaly at year t (64, 65)

Slope Slope average in the cell (66)

Fertility Fertility average in the cell (67)

Roads Euclidean distance to the 
nearest road (68)

Connection to 
markets

Distance to Sao Paulo or 
Brazilian Northeast considering 
the paved and unpaved roads

(27, 35, 68)

Railways Euclidean distance to the 
nearest railways (68)

Hydroways Euclidean distance to the 
nearest hydroways (69)

Distance to the wood 
poles

Euclidean distance to the 
nearest wood poles (70)

Mining (concession) Euclidean distance to the 
nearest mining site (71)

Small-scale/alluvial 
(“Garimpo”) mining 
(concession)

Euclidean distance to the 
nearest small-scale mining site (71)

Urban centers
Euclidean distance to nearest 
urban centers with more than 

10,000 inhabitants
(72)

Rural settlements Percentage of the cell 
coverage by rural settlements (73)

Indigenous territories Percentage of the cell 
coverage by conservation units (74, 75)

Conservation units
Percentage of the cell 

coverage by indigenous 
territories

(76)

Hydroelectric plants 
under construction 
or operation

Euclidean distance to 
hydroelectric plants under 
construction or operation

(77)
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changes in the spatial drivers and the occurrence of degradation in 
previous years. Table 1 presents the list of potential spatial drivers 
we considered in our analysis.

We weighted the degradation in each cell by its respective forest 
area to avoid contamination by deforested and nonforest data for 
the construction of the spatial regression model. Therefore, we 
excluded from statistical analysis cells whose forest percentage was 
equal to zero. We also performed a Spearman correlation analysis 
(50) between the variables in our dataset to prevent the use of factors 
with a correlation coefficient above 0.6 in the same regression.

We performed the statistical analysis for degradation considering 
the period from 2007 to 2011 and adjusted the explanatory variables 
to this date. On the basis of the literature (42, 51), we explore the 
degradation drivers considering two distinct periods: (i) from 2007 
to 2010 (years of degradation not affected by drought) and (ii) 2011 
(year of degradation affected by extreme drought year). The 2011 
year represents the influence of the extreme drought of 2010 (52). 
We emphasize that, according to DEGRAD and PRODES methodol-
ogy, the degradation mapped each year goes from August of the 
previous year to July of that year. Thus, 2011 degradation, for example, 
refers to the period from August 2010 to July 2011.

During the exploratory analysis phase, we observed that the 
spatial distribution of degradation was markedly different in 
“nondrought” and “drought” years. On the basis of this conclusion, 
we explored separate regressions. We adapted LuccME to alternate 
between both regressions during model execution using an attribute 
that indicates whether the year was a nondrought or drought 
impacted year. According to this rule, we set the “2010 average 
water deficit anomaly” as a threshold to classify all years. Years with 
an average value lower than the 2010 average water deficit anomaly 
were considered drought years, while the others were considered 
nondrought years. The model fit was assessed using the multiple 
determination coefficient values (R2) and the Akaike Information 
Criterion (34) that show the fit of the model (49).
Allocation
Once we have defined the model demand and potential parameters, 
we applied the LuccME allocation component (AllocationCClueLike) 
based on CLUE (47) to allocate the land cover classes annually for 
the period from 2012 to 2019. The model was configured so that for 
each year, both the forest and degradation classes may increase or 
decrease the area occupied within the cells, reflecting the behavior 
observed in the real data. The others class was adjusted annually to 
incorporate the deforestation that occurred over the years.

Once we defined all the parameters, we ran the model for the 
period from 2012 to 2019 to assess whether we were able to capture 
the behavior observed in the degradation data. To evaluate the 
results, we used the validation method of adjustment of multiple 
spatial resolutions (53), which establishes the similarity between the 
simulated map and the real map in different resolutions. This 
approach allowed us to evaluate both location errors in the model 
resolution itself and spatial pattern errors, degrading the resolution 
of the maps.
INPE-EM parametrization
INPE-EM combines land cover and biomass change maps to calculate 
CO2 emissions. We used the annual maps of degradation resulting 
from the simulation with LuccME and the deforestation and sec-
ondary vegetation scenarios developed by (27) to estimate CO2 
emissions from 2016. Estimates of CO2 emissions were based on 
(28) parameters described in Table 4.

We used INPE-EM nonspatial mode from 1960 to 2006 and 
spatial mode from 2007 to 2019. To account for lagged emissions 
and historical disturbances in the Amazon forest, we used historical 
nonspatial data, based on the literature for the 1960–2006 period, 
following the approach adopted in (25).

We adopted the biomass data from the Brazilian Third National 
GHG Inventory (54). The average AGB used for the historical non-
spatial period was 233 ton/ha, corresponding to the average of AGB 
in the areas that were degraded in the past.

We used the DEGRAD (until 2016) and DETER (after 2016) 
systems to provide degradation data for the INPE-EM spatial mode. 
For the nonspatial mode, we used the results of (55), which assessed an 
area of 1,714,600 ha degraded forests in the Brazilian Amazon between 
1988 and 1998. We considered a homogeneous annual average value 
(155,872 ha) for the period from 1988 to 2006. No degradation was 
considered before this period (1960–1987), following (27).

We used the relationship between intact and degraded forests 
over the years described by (14) to represent the biomass loss and 
recovery in a degraded area. Their results presented the biomass changes 
following conventional logging and fire pathways. We adopted the 
“1 time burned (average),” and based on it, we defined the AGB loss 
and generated the AGB regeneration curve. The recovery rates obtained 
from this curve are comparable with others presented in the literature 
(43, 56). We also used the results of (57) to define litter and dead 
wood loss.
Scenarios
To generate the degradation scenarios, we rely on the deforestation 
and secondary vegetation scenarios developed by (27), based on 
the Story and Simulation (SAS) approach (58), which combines 

Table 4. Parameters settings for the INPE-EM degradation 
component. AGB, aboveground biomass; BGB, belowground biomass. 

Parameter Description Nonspatial Spatial

Biomass Average biomass in 
a cell unit 233 ton ha−1

Brazilian Third 
National GHG 
Inventory (54)

Degradation

Percentage of cell 
unit identified as 

degraded that year by 
fire/logging events

155,872 ha (55) DEGRAD (16)

AGB loss
Percentage of AGB 

lost as a result of 
the event

54.2% (14) 54.2% (14)

BGB loss
Percentage of BGB 
lost as result of the 

event
0 0

Deadwood loss
Percentage of 

deadwood lost as a 
result of the event

46.9% (57) 46.9% (57)

Litter loss
Percentage of litter 
lost as result of the 

event
46.9% (57) 46.9% (57)

Growth curves
Rates of regeneration 

of the AGB along 
the years

Based on (14) 
relationship 

between intact 
and 1× burned 

forests

Based on (14) 
relationship 

between 
intact and 1× 

burned forests
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qualitative and quantitative elements. These scenarios were produced 
with the participation of stakeholders in structured workshops (59) 
to discuss desired and undesirable visions of the future related to 
natural resources, social development, economic activities, infra-
structure, technology, and the political and institutional context. 
From these visions of the future, trajectories were constructed to 
reach each of them, thus defining the scenarios: (i) Sustainable, with 
improvements in the socioeconomic, institutional, and environmental 
dimensions; (ii) Fragmentation with the weakening of the socio-
environmental dimension and chaotic urbanization; and (iii) 
“middle of the road.” These scenarios are reasonably aligned with 
the Intergovernmental Panel on Climate Change (IPCC) Shared 
Socioeconomic Pathways (SSP) 1, 3, and 2, respectively (60, 61). In 
this work, we considered the “Sustainable” and Fragmentation 
scenarios and their premises to generate the degradation scenarios 
and combine them with the scenarios produced by (27).

We selected four elements for the qualitative narratives from 
(27) to be represented in the quantitative models: (i) environmental 
law enforcement, (ii) future clear-cut deforestation, (iii) secondary 
vegetation dynamics in abandoned areas after clear-cut deforestation, 
and (iv) changes in the substantial spatiotemporal deforestation 
drivers: conservation units and roads (35). We adopted all these 
premises described in (27) in the development of forest degradation 
scenarios. The Sustainable scenario considered that political and 
institutional conditions would favor reducing deforestation by 2020, 
reaching an average of 1000 km2/year from 2025 onward. This 
scenario also considers the regeneration of all illegally deforested 
areas and assumes that the secondary vegetation will increase from 
22 to 35% from 2015 to 2030 and will no longer be periodically 
removed. The Fragmentation scenario took a return of high deforesta-
tion rates, like those before 2004, of 15,000 km2/year. In this scenario, 
the National Forest Code is not respected. Secondary vegetation 
follows its current dynamics, with a high rate of deforested land 
abandonment and a short cutting cycle in consolidated areas.

To define forest degradation rates in each of the scenarios, we 
applied the results of (30). They projected forest degradation until 
2100 using (27) land-use scenarios and climate scenarios based on 
Representative Concentration Pathways RCP4.5 and RCP8.5 (62, 63). 
To explore variations in socioeconomic assumptions and deforesta-
tion scenarios, we adopted a single scenario RCP4.5, which considers 
the stabilization of the radiative forcing at 4.5 W m−1 in the year 
2100. As we adopted two opposing land-use scenarios, we decided 
to use an intermediate climate scenario for both.

We calculated the annual amount of degradation in each scenario 
by applying the projected growth rate for each scenario to the yearly 
reference value, given by the average degradation between 2007 and 
2019. We, therefore, adopted (30) degradation growth projections, 
which combined (i) RCP4.5 and the Sustainable scenario and (ii) 
RCP4.5 and the Fragmentation scenario.

Last, we used the annual degradation maps generated for each 
scenario up to 2050 to estimate CO2 emissions resulting from this 
process. For this, we used INPE-EM (25) with the parameters of 
deforestation and secondary vegetation adopted in (27) scenarios 
and the parameters of degradation described in the “INPE-EM 
parametrization” section.
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